If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5000x^2-15x-16=0
a = 5000; b = -15; c = -16;
Δ = b2-4ac
Δ = -152-4·5000·(-16)
Δ = 320225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320225}=\sqrt{25*12809}=\sqrt{25}*\sqrt{12809}=5\sqrt{12809}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{12809}}{2*5000}=\frac{15-5\sqrt{12809}}{10000} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{12809}}{2*5000}=\frac{15+5\sqrt{12809}}{10000} $
| 4x-6=6x-5 | | 5x-2(x-3)=16 | | 20t=13 | | X=198-4y | | b=95+(15+9) | | 12a-109=60 | | 50x+72=130+142 | | 6(p-3)+4=28 | | 3w-3=-15 | | 11x+12x=2080 | | x=(x/2-2000)^3 | | -1/2a-5+29/6a=-5 | | -147=7(-4x-1) | | 39p-7)+11=8 | | r+13=17 | | 1.5x=771 | | 5(8x-7)=285 | | u.2-8=19 | | 10x+(x+3)25+(2x)5+(4x)1=761 | | 8(m-5)-3=27 | | 11z=20 | | 6.5=40/x | | y+16=17 | | 0.10x+(x+3)0.25+(2x)0.5+(4x)0.1=7.61 | | 5(e+4)+14=59 | | |3k-2|=7 | | 3x/5x=6 | | 3/2x(2/3x)=3/2x18 | | 11x-7=7x-1 | | 20x-24+2(4x-3)=2(10x-5) | | 5(4n-5)=115 | | 3u+3=6 |